Forcing Total Detour Monophonic Sets in a Graph

نویسندگان

  • A. P. Santhakumaran
  • P. Titus
  • K. Ganesamoorthy
  • K. GANESAMOORTHY
چکیده

For a connected graph G = (V,E) of order at least two, a total detour monophonic set of a graph G is a detour monophonic set S such that the subgraph induced by S has no isolated vertices. The minimum cardinality of a total detour monophonic set of G is the total detour monophonic number of G and is denoted by dmt(G). A subset T of a minimum total detour monophonic set S of G is a forcing total detour monophonic subset for S if S is the unique minimum total detour monophonic set containing T . A forcing total detour monophonic subset for S of minimum cardinality is a minimum forcing total detour monophonic subset of S. The forcing total detour monophonic number ftdm(S) in G is the cardinality of a minimum forcing total detour monophonic subset of S. The forcing total detour monophonic number of G is ftdm(G) = min{ftdm(S)}, where the minimum is taken over all minimum total detour monophonic sets S in G. We determine bounds for it and find the forcing total detour monophonic number of certain classes of graphs. It is shown that for every pair a, b of positive integers with 0 6 a < b and b > 2a+1, there exists a connected graph G such that ftdm(G) = a and dmt(G) = b.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detour Monophonic Graphoidal Covering Number of Corona Product Graph of Some Standard Graphs with the Wheel

A chord of a path $P$ is an edge joining two non-adjacent vertices of $P$. A path  $P$ is called a monophonic path if it is a chordless path. A longest $x-y$ monophonic path is called an $x-y$ detour monophonic path. A  detour monophonic graphoidal cover of a graph $G$ is a collection $psi_{dm}$ of detour monophonic paths in $G$ such that every vertex of $G$ is an internal vertex  of at most on...

متن کامل

Monophonic Distance in Graphs

For any two vertices u and v in a connected graph G, a u − v path is a monophonic path if it contains no chords, and the monophonic distance dm(u, v) is the length of a longest u − v monophonic path in G. For any vertex v in G, the monophonic eccentricity of v is em(v) = max {dm(u, v) : u ∈ V}. The subgraph induced by the vertices of G having minimum monophonic eccentricity is the monophonic ce...

متن کامل

Edge-to-vertex Detour Monophonic Number of a Graph

For a connected graph G = (V,E) of order at least three, the monophonic distance dm(u, v) is the length of a longest u− v monophonic path in G. For subsets A and B of V , the monophonic distance dm(A,B) is defined as dm(A,B) = min{dm(x, y) : x ∈ A, y ∈ B}. A u− v path of length dm(A,B) is called an A−B detour monophonic path joining the sets A,B ⊆ V, where u ∈ A and v ∈ B. A set S ⊆ E is called...

متن کامل

Upper Edge Detour Monophonic Number of a Graph

For a connected graph G of order at least two, a path P is called a monophonic path if it is a chordless path. A longest x−y monophonic path is called an x − y detour monophonic path. A set S of vertices of G is an edge detour monophonic set of G if every edge of G lies on a detour monophonic path joining some pair of vertices in S. The edge detour monophonic number of G is the minimum cardinal...

متن کامل

The Connected Detour Monophonic Number of a Graph

For a connected graph G = (V,E) of order at least two, a chord of a path P is an edge joining two non-adjacent vertices of P . A path P is called a monophonic path if it is a chordless path. A longest x− y monophonic path is called an x− y detour monophonic path. A set S of vertices of G is a detour monophonic set of G if each vertex v of G lies on an x − y detour monophonic path, for some x an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017